

Justin Nadar

Application Specialist, HPLC/UHPLC

Thermo Fisher

Proprietary & Confidential

Understanding the Principles of HPLC The world leader in serving science

- Fundamentals of Chromatography HPLC
- Instrumentation HPLC
- Applications

INTRODUCTION

Mikhail Tswett, Russian Botanist, 1872-1919

In 1906 Tswett used chromatography to separate plant pigments.

He called the new technique chromatography

Chromatography means color writing

Chroma means "color" and graphein means to "write"

He used liquid –adsorption column chromatography with calcium carbonate as adsorbent and petrol ether / ethanol mixtures as eluent to separate chlorophylls & carotenoids

Chromatography is an analytical technique commonly used for separating a mixture of chemical substances into its individual components so that the individual components can be thoroughly analyzed

Column Chromatography

Planar Chromatography

Gas Chromatography

Liquid Chromatography

Super Critical Fluid Chromatography

Simulating Moving Bed Chromatography

Liquid Chromatography

Introduction – The Chromatographic Process

- The separation is based on differential partitioning between the mobile and stationary phases
- Subtle differences in a compound's <u>partition coefficient</u> result in differential retention on the stationary phase and thus affect the separation

UHP Introduction – HPLC-System: General Design

- Pump with Degasser
- Autosampler
- Column (installed in a Column Compartment)
- Detector
- Computer with control software

tocus

Detectors

Detector	Response – Solute	Selectivity	Sensitivity	Linear Range	Destructive	Flow Sensitive
RI/RID	Universal – Bulk	No	microgram	10 ⁴	Νο	Yes
UV-PDA	Selective - Solute	Chromophore	nanogram	10 ⁵	Νο	No
FL/FD	Selective - Solute	Fluorophore	picogram	10 ³	Νο	No
ELS/ELD/ ELSD	Selective - Bulk	Volatization	picogram	Non-Linear	Yes	Yes
MS	Selective- Solute	Ionization	femtogram	10 ⁴ - IS*	Yes	Yes
MS/MS	Selective - Solute	Ionization	femtogram attogram	10 ⁵ - IS*	Yes	Yes
ECD	Selective - Solute	Redox	picogram	10 ⁶	Yes	Yes
CAD	Selective - Bulk	Aerosols	nanogram	10 ⁴	yes	Yes

SCIENTIFIC

Characteristics that are to be fulfilled by a detector to be used in HPLC determination are:

- □ High sensitivity, facilitating trace analysis
- □ Negligible baseline noise to facilitate lower detection
- □ Low drift and noise level
- □ Wide linear dynamic range (this simplifies quantitation)
- □ Low dead volume (minimal peak broadening)
- □ Cell design that eliminates remixing of the separated bands
- □ Insensitivity to changes in type of solvent, flow rate and temperature
- □ Operational simplicity and reliability
- □ Tunability so that detection can be optimized for different compounds

Assay **Related substances** Dissolution **Content Uniformity** Genotoxic impurities Determination of Molecular weight **Reverse engineering** Characterisation Carry-over studies Bioequivalence studies (ADME/PDPK) **Reaction monitoring** Chemical kinetics **Toxicological studies** Clinical and pharmacological studies

THEORY OF CHROMATOGRAPHY

Plate Theory and Column Efficiency Band Broadening (van Deemter plot) Resolution Influence of Smaller Particle Diameter

- Plate model assumes that the chromatographic column contains a large number of separate layers, called theoretical plates.
- These plates do not really exist; they are a figment of the imagination to help us describe the processes in the column.
- Within the plates, the mobile and stationary phases, are described as being in equilibrium.
- The partition coefficient K is based on this equilibrium and is defined as: $K = c_{stat} / c_{mob}$
- As K increases it takes longer for solute to elute and the retention time increases.

- The plate theory serves as a way of measuring column quality
 - Either by stating the number of theoretical plates (N) in a column (the more plates the better)

or

- by stating the plate height (HETP, H); the Height Equivalent to a Theoretical Plate (the smaller the better)
- Columns with high plate numbers are more efficient than columns with lower plate numbers.
- A column with a high number of plates will have a narrower peak at a given retention time than a column with a lower number of plates.

Theory of Chromatography – Influence of Efficiency on the Separation Quality

N is related to band broadening in the chromatographic system.

UHP

focuse

Theory of Chromatography – Causes of Band Broadening

- Extra column effects
 - Tubing and connections
 - Detector flow cell
 - Eluent pre-conditioner
 - In-line filter
- In-column effects
 - Unwanted processes
 - Damaged packing, void volumes
 - · Immobilized impurities on stationary phase or column inlet frit
 - Thermal mismatch
- Natural processes
 - Eddy dispersion
 - Longitudinal diffusion
 - Resistance to mass transfer

Van Deemter Theory explains natural processes.

Theory of Chromatography – Band Broadening (Van Deemter Plot)

Theory of Chromatography

- Parameters which Influence Band Broadening

Resolution R of two peaks: Goal of every chromatographic method!

- Distance between the peak centers of two peaks divided by the average base width of the peaks.
- From theory R > 1.50 indicates baseline separation.
- In real life R ≥ 2 is usually the goal (requested in regulated environment).
- Much more resolution than 2 does not improve separation quality but increases analysis time.

Thermodynamic and Kinetic Factors that determine Resolution

The fundamental parameters

- Efficiency, N
- Selectivity, α
- Retention characteristics, k

Theory of Chromatography – Effects on Resolution

$$\alpha = \frac{t_{s2}}{t_{s1}} = \frac{t_{ms2} - t_m}{t_{ms1} - t_m}$$

Selectivity can be changed by

- Changing the stationary phase
- Changing the mobile phase or ionic strength
- Changing the temperature (column oven)
- Changing the charge on the solute (pH)

Theory of Chromatography – Retention Characteristics

 $\mathbf{k} = \mathbf{t}_{\rm s}/\mathbf{t}_{\rm m} = (\mathbf{t}_{\rm ms} - \mathbf{t}_{\rm m})/\mathbf{t}_{\rm m}$

- Small k values
 - the components elute close to void volume
 - are not well resolved
- Large k values
 - good separations
- Very large k values
 - longer retention times
 - peak broadening which can compromise sensitivity
- Typical working range
 - 2 < k < 10

Theory of Chromatography – The Influence of the Particle Diameter on Speed

Theory of Chromatography – Influence of the Particle Diameter on Pressure

For separation speed – We Need High Pressure and Fast Flows

- The smaller the particles, the better the separation performance
- But: Smaller particles generate higher back pressure

	Typical Particle Size	Typical Back Pressure	Typical Column Diameter
Preparative HPLC	100 – 10 μm	10 - 100 bar	21 mm
Conventional HPLC	5 – 3 µm	100 – 300 bar	4.6 mm
UHPLC	≤ 3 µm	≥ 600 bar	2.1 mm

- HPLC: High Performance Liquid Chromatography
- UHPLC: Ultra High Performance Liquid Chromatography

- Plate theory and column Efficiency
 - The higher the plate number N the better the efficiency of the column
- Band broadening (van Deemter plot)
 - Natural processes result in band broadening
- Resolution is a function of column efficiency, selectivity and retention characteristics.
- Influence of smaller particle diameter:
 - Higher resolution
 - More speed possible
 - Higher back pressure generated

Normal Phase Chromatography Reversed Phase Chromatography Isocratic elution Gradient Elution Mobile Phase Additives

COLUMN CHEMISTRY

32

Bonded Phases

Frits or Sieves as Stationary Phase Retainers

- Protects the packing from sample matrix particles

- Functional groups chemically bound to the solid support.

 Mesh size shrinks with particle size ⇒ ≤ 3 µm require thorough eluent filtration!

- Solid Support Backbone for bonded phases
 - Usually porous silica or polymeric particles

Column Chemistry – The Column

• **Normal Phase** (NP): The stationary phase is polar and the mobile phase is non-polar.

➢Niche mode in modern (prep) LC (e.g. separation of enantiomers)

• **Reversed Phase** (RP): The stationary phase is made of chemically modified silica (normally with non-polar surface) and the mobile phase is polar.

Most common HPLC modeGood for separation of broad polarity range

• Early HPLC experiments worked with pure silica and polar solvents.

General rule: "Similia similibus attrahuntur" ("like dissolves like").

Column Chemistry – Reversed Phase Chromatography

Example: C8

• Common **RP stationary phases**: Normal silica treated with \mathbf{RMe}_2 SiCI $\mathbf{R}=(CH_2)_{17}CH_3$: C18 $\mathbf{R}=(CH_2)_7CH_3$: C8

Common RP mobile phases:

Water < Methanol < Acetonitrile (elutropic series for RP: decreasing retention)

Column Chemistry – Mobile Phase Additives in Reversed Phase

- Inorganic salts:
 - Altered surface tension affects retention characteristics by altering the analyte/surface interaction
 - Example: Ammonium sulfate for peptide separation
- Ion pairing reagents
 - Neutralize charged analytes for better retention
 - Example: Trifluoroacetic acid (TFA), Triethylamine (TEA)
- Buffering agents
 - Neutralize charged analytes for better retention and increase reproducibility
 of retention time
 - Example: Sodium acetate buffer, sodium phosphate buffer

Column Chemistry – Separation of Acidic, Basic and Neutral Compounds focused

Column Chemistry – Acids and Bases – pH Effects

The stronger an analyte is charged, the less its retention on a RP-Phase

Eluent Capillaries Column Pump Autosampler Oven Detector

SYSTEM CONTRIBUTION

System Contribution – **UHPLC** How do the Modules Contribute to the Chromatogram?focused

- Eluents have to be prepared and handled with reasonable care to avoid particle contamination.
- Dead-volume free connections and minimized extra-column volume by use of appropriate **tubing and fitting** systems.
- The pump has to mix the eluents precisely and accurately and provide a constant flow rate and back pressure.
- The **autosampler** has to work accurately for successful method transfer and preciscely for good result reproducibility.
- The temperature effect compound retention and peak shape and has to be controlled reliably by the column oven.
- Reasonable **detector** settings are essential for good peak mapping.

Dionex' UHPLC-Compatible Detectors

Note: 200 Hz only available with Chromeleon 7

Vanquish HPLC / UHPLC System

- Integrated modularity
- Biocompatible, iron-free flow path (default)
- · Viper-based, tool-free fluidic connections
- Support of latest innovation in column technology
- Enhanced LC/MS support and integration
- Portable system control with tablet PC (planned)
- Revolutionary module drawer system for outstanding service accessibility
- Removable doors for easy access
- Reduced system height
- Variable system GDV in standard configuration as low as 40 μL

M16 Slide 7 bis 12 kommen auch in der Customer-Präsentation vor - da sind sie auch verfeinert worden MNeubaue, 6/30/2014

Thermo Fisher

Vitamin D - Coulochem III and ultra Analytical cell

AN109: Rapid HPLC Separation of Multiclass Antibiotics in Food and Water

lo	Peak_Name	*Compound_Class	Retention_Time	Peak_Area	Peak_Area_pc	Peak_Height	Peak_Height_pc	Peak_EP_Plates
1	Sulfathiazole	Antibiotic	1.722	3.077	23.18	88.557	21.39	17098
2	Oxytetracycline	Antibiotic	1.923	2.080	15.67	68.469	16.54	27416
3	Tetracycline	Antibiotic	2.107	2.356	17.75	73.512	17.76	30275
4	Nitrofurantoin	Antibiotic	2.302	3.558	26.81	110.404	26.67	33740
5	Tylosin_related product a	Antibiotic	3.488	0.055	0.42	1.480	0.36	55533
в	Chloramphenicol	Antibiotic	3.606	1.550	11.68	56.859	13.74	115229
7	Tylosin_related product b	Antibiotic	3.668	0.073	0.55	3.055	0.74	169032
В	Tylosin_related product c	Antibiotic	3.785	0.524	3.95	11.637	2.81	47987

F&B

Column: Dionex Acclaim RSLC PA2, 2.2 µm, 150 x 2.1 mm

Separation of Fat-Soluble Vitamins on Acclaim RSLC PolarAdvantagenbLC⁺ (PA2)

F&B

No	Peak_Name	*Compound_Class	Retention_Time	Peak_Area	Peak_Area_pc	Peak_Height	Peak_Height_pc	Peak_EP_Plates
1	Vitamin A acetate	Vitamins	0.547	1.323	12.26	67.735	32.42	5409
2	Impurity in vitamin E	Impurity	1.440	0.039	0.36	0.917	0.44	6726
3	Vitamin E acetate	Vitamins	1.579	0.324	3.00	6.762	3.24	6817
4	Degradation product of vitamin D	Impurity, Degradant	1.719	0.154	1.42	2.858	1.37	6501
5	Degradation product of vitamin D	Impurity, Degradant	1.827	0.162	1.50	3.124	1.49	7648
6	Vitamin D2	Vitamins	2.084	3.389	31.39	51.651	24.72	6463
7	Vitamin D3	Vitamins	2.260	5.406	50.07	75.914	36.33	6497

Column: Acclaim RSLC PA2, 2.2 $\mu m,$ 100 x 2.1 mm

AN245: Fast HPLC Analysis of Dyes in Foods and Beverages

No	Peak_Name	*Compound_Class	Retention_Time	Peak_Area	Peak_Area_pc	Peak_Height	Peak_Height_pc	Peak_EP_Plates
1	Tartrazine	Dyes	0.56	0.395	9.92	9.570	5.02	1270
2	Amaranth	Dyes	1.10	0.505	12.67	16.869	8.85	9361
3	Indigo Carmine	Dyes	1.20	0.636	15.98	33.884	17.78	28161
4	New Coccine	Dyes	1.27	0.300	7.53	16.372	8.59	33538
5	Sunset Yellow FCF	Dyes	1.38	0.452	11.36	25.326	13.29	43203
6	Fast Green FCF	Dyes	1.72	0.189	4.74	10.583	5.55	61352
7	Eosin Y	Dyes	1.78	0.530	13.31	28.409	14.91	64486
8	Erythrosine	Dyes	1.92	0.417	10.46	22.034	11.56	69506
9	Phloxine B	Dyes	2.11	0.374	9.38	18.724	9.82	80499
10	Bengal Rose B	Dyes	2.23	0.185	4.66	8.828	4.63	80364

F&B

Column: Dionex Acclaim RSLC PA2, 2.2 μ m, 50 x 2.1 mm

Ultrafast Analysis of Water Soluble Vitamins by Parallel UHPLC

No	Peak_Name	*Compound_Class	Retention_Time	Peak_Area	Peak_Area_pc	Peak_Height	Peak_Height_pc	Peak_EP_Plates
1	Thiamine	Vitamin	0.402	0.481	5.24	13.885	3.54	1429
2	Ascorbic Acid	Vitamin	0.575	0.166	1.81	6.340	1.61	3134
3	Niacinamide	Vitamin	0.728	3.033	33.00	111.623	28.42	5090
4	Pyridoxine	Vitamin	0.916	3.150	34.28	90.932	23.15	4999
5	Pantothenic Acid	Vitamin	1.822	0.438	4.77	32.667	8.32	111606
6	Folic Acid	Vitamin	2.070	0.444	4.83	31.850	8.11	140396
7	Riboflavin	Vitamin	2.120	1.476	16.06	105.444	26.85	163715

F&B

Column: Dionex Acclaim RSLC PA2, 2.2 $\mu m,$ 100 x 2.1 mm

AN193: Determination of Additives in Carbonated Beverages using

1	Caffeine	Alkaloid	1.093	1.531	10.95	31.863	23.67	3666
2	Aspartame	Sweetener	1.353	1.337	9.56	20.585	15.29	3294
3	Sorbate	Preservative	1.993	1.095	7.83	14.425	10.72	4429
4	Benzoate	Preservative	2.500	1.807	12.92	19.428	14.43	4774
5	Citrate	Food Acid	3.900	0.402	2.87	2.365	1.76	4740
6	Acesulfame	Sweetener	4.980	3.844	27.49	25.846	19.20	7250
7	Saccharin	Sweetener	6.467	3.970	28.38	20.101	14.93	6930

F&B

Column: Acclaim Mixed-Mode WAX-1, 5 µm, 150 x 4.6 mm

High-Resolution Triglyceride Profile of Cooking Oils

F&B

Column: Acclaim RSLC 120 C18, 2.2 $\mu m,$ 100 x 2.1 mm

Polyphenols Analysis with RSLC System

AppsLibrary Conclusion

- Web Based Application Search Engine
- Offers easy search option for Dionex IC/LC applications
- Provides unique structured searching tools for
 - Analyte name or class
 - Market and instrument type
 - Column information such as particle size and packing material
- Modern application view screen
 - See all details in a single glance
- Unique download of all application settings for immediate use

- NAME THE LAW THAT FORMS THE PRINCIPLE OF UV DETECTORS.
- NAME THE LAW THAT FORMS THE PRINCIPLE OF REFRACTIVE INDEX DETECTOR.
- NAME THE EQUATION THAT DEFINES THE PEAK BROADENING WITHIN A CHROMATOGRAPHIC COLUMN.
- IN REVERSE PHASE CHROMATOGRAPHY, THE STATIONARY PHASE IS _____. (POLAR/NON-POLAR)
- IN NORMAL PHASE CHROMATOGRAPHY, THE MOBILE PHASE IS _____(POLAR/NON-POLAR)
- WHAT DOES THE 'N' STAND FOR IN RESOLUTION EQUATION?
- WHAT DOES THE 'α' STAND FOR IN RESOLUTION EQUATION?
- WHAT DOES THE 'k' STAND FOR IN RESOLUTION EQUATION?
- IN FLUORESCENCE DETECTION, THERE ARE TWO WAVELENGTHS, WHAT ARE THEY?
- FOR ______ DETECTION, THE COMPOUND SHOULD HAVE REDOX PROPERTIES.